Goto

Collaborating Authors

 School Nutrition


Benchmarking Distribution Shift in Tabular Data with TableShift Josh Gardner Ludwig Schmidt, University of Washington

Neural Information Processing Systems

Robustness to distribution shift has become a growing concern for text and image models as they transition from research subjects to deployment in the real world. However, high-quality benchmarks for distribution shift in tabular machine learning tasks are still lacking despite the widespread real-world use of tabular data and differences in the models used for tabular data in comparison to text and images. As a consequence, the robustness of tabular models to distribution shift is poorly understood.


Knowledge Distillation from Large Language Models for Household Energy Modeling

arXiv.org Artificial Intelligence

Machine learning (ML) is increasingly vital for smart-grid research, yet restricted access to realistic, diverse data - often due to privacy concerns - slows progress and fuels doubts within the energy sector about adopting ML-based strategies. We propose integrating Large Language Models (LLMs) in energy modeling to generate realistic, culturally sensitive, and behavior-specific data for household energy usage across diverse geographies. In this study, we employ and compare five different LLMs to systematically produce family structures, weather patterns, and daily consumption profiles for households in six distinct countries. A four-stage methodology synthesizes contextual daily data, including culturally nuanced activities, realistic weather ranges, HVAC operations, and distinct `energy signatures' that capture unique consumption footprints. Additionally, we explore an alternative strategy where external weather datasets can be directly integrated, bypassing intermediate weather modeling stages while ensuring physically consistent data inputs. The resulting dataset provides insights into how cultural, climatic, and behavioral factors converge to shape carbon emissions, offering a cost-effective avenue for scenario-based energy optimization. This approach underscores how prompt engineering, combined with knowledge distillation, can advance sustainable energy research and climate mitigation efforts. Source code is available at https://github.com/Singularity-AI-Lab/LLM-Energy-Knowledge-Distillation .


All-in-One Tuning and Structural Pruning for Domain-Specific LLMs

arXiv.org Artificial Intelligence

Existing pruning techniques for large language models (LLMs) targeting domain-specific applications typically follow a two-stage process: pruning the pretrained general-purpose LLMs and then fine-tuning the pruned LLMs on specific domains. However, the pruning decisions, derived from the pretrained weights, remain unchanged during fine-tuning, even if the weights have been updated. Therefore, such a combination of the pruning decisions and the finetuned weights may be suboptimal, leading to non-negligible performance degradation. To address these limitations, we propose ATP: All-in-One Tuning and Structural Pruning, a unified one-stage structural pruning and fine-tuning approach that dynamically identifies the current optimal substructure throughout the fine-tuning phase via a trainable pruning decision generator. Moreover, given the limited available data for domain-specific applications, Low-Rank Adaptation (LoRA) becomes a common technique to fine-tune the LLMs. In ATP, we introduce LoRA-aware forward and sparsity regularization to ensure that the substructures corresponding to the learned pruning decisions can be directly removed after the ATP process. ATP outperforms the state-of-the-art two-stage pruning methods on tasks in the legal and healthcare domains. More specifically, ATP recovers up to 88% and 91% performance of the dense model when pruning 40% parameters of LLaMA2-7B and LLaMA3-8B models, respectively.


Preserving Pre-trained Representation Space: On Effectiveness of Prefix-tuning for Large Multi-modal Models

arXiv.org Artificial Intelligence

Recently, we have observed that Large Multi-modal Models (LMMs) are revolutionizing the way machines interact with the world, unlocking new possibilities across various multi-modal applications. To adapt LMMs for downstream tasks, parameter-efficient fine-tuning (PEFT) which only trains additional prefix tokens or modules, has gained popularity. Nevertheless, there has been little analysis of how PEFT works in LMMs. In this paper, we delve into the strengths and weaknesses of each tuning strategy, shifting the focus from the efficiency typically associated with these approaches. We first discover that model parameter tuning methods such as LoRA and Adapters distort the feature representation space learned during pre-training and limit the full utilization of pre-trained knowledge. We also demonstrate that prefix-tuning excels at preserving the representation space, despite its lower performance on downstream tasks. These findings suggest a simple two-step PEFT strategy called Prefix-Tuned PEFT (PT-PEFT), which successively performs prefix-tuning and then PEFT (i.e., Adapter, LoRA), combines the benefits of both. Experimental results show that PT-PEFT not only improves performance in image captioning and visual question answering compared to vanilla PEFT methods but also helps preserve the representation space of the four pre-trained models.


A Benchmark Task Details

Neural Information Processing Systems

The risk for lead exposure is disproportionately higher for children who are poor, non-Hispanic black, living in large metropolitan areas, or living in older housing. The CDC sets a national standard for blood lead levels in children. This value was established in 2012 to be 3.5 micrograms per decileter (ยตg/dL) of blood.


Benchmarking Distribution Shift in Tabular Data with TableShift Josh Gardner Ludwig Schmidt, University of Washington

Neural Information Processing Systems

Robustness to distribution shift has become a growing concern for text and image models as they transition from research subjects to deployment in the real world. However, high-quality benchmarks for distribution shift in tabular machine learning tasks are still lacking despite the widespread real-world use of tabular data and differences in the models used for tabular data in comparison to text and images. As a consequence, the robustness of tabular models to distribution shift is poorly understood.


A Large Dataset of Spontaneous Speech with the Accent Spoken in S\~ao Paulo for Automatic Speech Recognition Evaluation

arXiv.org Artificial Intelligence

We present a freely available spontaneous speech corpus for the Brazilian Portuguese language and report preliminary automatic speech recognition (ASR) results, using both the Wav2Vec2-XLSR-53 and Distil-Whisper models fine-tuned and trained on our corpus. The NURC-SP Audio Corpus comprises 401 different speakers (204 females, 197 males) with a total of 239.30 hours of transcribed audio recordings. To the best of our knowledge, this is the first large Paulistano accented spontaneous speech corpus dedicated to the ASR task in Portuguese. We first present the design and development procedures of the NURC-SP Audio Corpus, and then describe four ASR experiments in detail. The experiments demonstrated promising results for the applicability of the corpus for ASR. Specifically, we fine-tuned two versions of Wav2Vec2-XLSR-53 model, trained a Distil-Whisper model using our dataset with labels determined by Whisper Large-V3 model, and fine-tuned this Distil-Whisper model with our corpus. Our best results were the Distil-Whisper fine-tuned over NURC-SP Audio Corpus with a WER of 24.22% followed by a fine-tuned versions of Wav2Vec2-XLSR-53 model with a WER of 33.73%, that is almost 10% point worse than Distil-Whisper's. To enable experiment reproducibility, we share the NURC-SP Audio Corpus dataset, pre-trained models, and training recipes in Hugging-Face and Github repositories.


Robust Learning for Optimal Dynamic Treatment Regimes with Observational Data

arXiv.org Machine Learning

Many public policies and medical interventions involve dynamics in their treatment assignments, where treatments are sequentially assigned to the same individuals across multiple stages, and the effect of treatment at each stage is usually heterogeneous with respect to the history of prior treatments and associated characteristics. We study statistical learning of optimal dynamic treatment regimes (DTRs) that guide the optimal treatment assignment for each individual at each stage based on the individual's history. We propose a step-wise doubly-robust approach to learn the optimal DTR using observational data under the assumption of sequential ignorability. The approach solves the sequential treatment assignment problem through backward induction, where, at each step, we combine estimators of propensity scores and action-value functions (Q-functions) to construct augmented inverse probability weighting estimators of values of policies for each stage. The approach consistently estimates the optimal DTR if either a propensity score or Q-function for each stage is consistently estimated. Furthermore, the resulting DTR can achieve the optimal convergence rate $n^{-1/2}$ of regret under mild conditions on the convergence rate for estimators of the nuisance parameters.


Benchmarking Distribution Shift in Tabular Data with TableShift

arXiv.org Artificial Intelligence

Robustness to distribution shift has become a growing concern for text and image models as they transition from research subjects to deployment in the real world. However, high-quality benchmarks for distribution shift in tabular machine learning tasks are still lacking despite the widespread real-world use of tabular data and differences in the models used for tabular data in comparison to text and images. As a consequence, the robustness of tabular models to distribution shift is poorly understood. To address this issue, we introduce TableShift, a distribution shift benchmark for tabular data. TableShift contains 15 binary classification tasks in total, each with an associated shift, and includes a diverse set of data sources, prediction targets, and distribution shifts. The benchmark covers domains including finance, education, public policy, healthcare, and civic participation, and is accessible using only a few lines of Python code via the TableShift API. We conduct a large-scale study comparing several state-of-the-art tabular data models alongside robust learning and domain generalization methods on the benchmark tasks. Our study demonstrates (1) a linear trend between in-distribution (ID) and out-of-distribution (OOD) accuracy; (2) domain robustness methods can reduce shift gaps but at the cost of reduced ID accuracy; (3) a strong relationship between shift gap (difference between ID and OOD performance) and shifts in the label distribution. The benchmark data, Python package, model implementations, and more information about TableShift are available at https://github.com/mlfoundations/tableshift and https://tableshift.org .


Unsupervised Task Graph Generation from Instructional Video Transcripts

arXiv.org Artificial Intelligence

This work explores the problem of generating task graphs of real-world activities. Different from prior formulations, we consider a setting where text transcripts of instructional videos performing a real-world activity (e.g., making coffee) are provided and the goal is to identify the key steps relevant to the task as well as the dependency relationship between these key steps. We propose a novel task graph generation approach that combines the reasoning capabilities of instruction-tuned language models along with clustering and ranking components to generate accurate task graphs in a completely unsupervised manner. We show that the proposed approach generates more accurate task graphs compared to a supervised learning approach on tasks from the ProceL and CrossTask datasets.